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Abstract
The prevalent use of third-party libraries (TPLs) in modern soft-
ware development introduces significant security and compliance
risks, necessitating the implementation of Software Composition
Analysis (SCA) to manage these threats. However, the accuracy of
SCA tools heavily relies on the quality of the integrated feature
database to cross-reference with user projects. While under the
circumstance of the exponentially growing of open-source ecosys-
tems and the integration of large models into software development,
it becomes even more challenging to maintain a comprehensive
feature database for potential TPLs. To this end, after referring
to the evolution of LLM applications in terms of external data in-
teractions, we propose the first framework of DB-Less SCA, to
get rid of the traditional heavy database and embrace the flexi-
bility of LLMs to mimic the manual analysis of security analysts
to retrieve identical evidence and confirm the identity of TPLs by
supportive information from the open Internet. Our experiments
on two typical scenarios, native library identification for Android
and copy-based TPL reuse for C/C++, especially on artifacts that
are not that underappreciated, have demonstrated the favorable
future for implementing database-less strategies in SCA.
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• Security and privacy→ Software security engineering.
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1 Introduction
In modern software development, the widespread use of third-party
libraries (TPLs) and code reuse increases the risk of security vul-
nerabilities and compliance issues. Software Composition Analysis
(SCA) mitigates these risks by detecting TPLs in projects and cross-
referencing them with databases of known threats and licensing
conflicts. Popular tools such as Snyk [6], Synopsys Black Duck [1],
and WhiteSource [5] are widely adopted for securing the software
supply chain.

Many researchers [11, 15, 22, 23, 25, 29] have explored improving
and adopting SCA tools across diverse scenarios. However, most val-
idate their tools using limited prototype databases, often based on
only tens of thousands of repositories with over 100 stars [21–23],
and report that incomplete component databases reduce tool accu-
racy. In practice, third-party reuse spans far beyond such datasets,
challenging the validation of SCA tools. This problem is particu-
larly critical for C/C++ libraries due to the lack of a centralized
repository, unlike Python’s PyPI [17], and the abundance of scat-
tered libraries online [19]. As a result, accurately mapping detected
code to known libraries remains difficult, complicating open-source
software maintenance.

Constructing a comprehensive SCA database is non-trivial, es-
pecially with the rapid growth of open-source ecosystems and the
rising integration of large models and frameworks. Maintaining
an extensive and reliable feature database has become increasingly
burdensome for SCA tools. Commercial SCA tools [1–3, 6, 7] de-
pend on continuously updated databases, but these typically focus
on centralized repositories like PyPI and often miss self-hosted or
obscure libraries. Consequently, their coverage is limited, reducing
effectiveness in detecting dependencies and analyzing vulnerabili-
ties comprehensively. The widespread adoption of LLMs [12] has
inspired new perspectives. LLM interactions with external data
have evolved from heavy approaches like fine-tuning on specialized
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datasets to lighter methods such as retrieval-augmented generation
(RAG), which leverages smaller, focused datasets and the generaliz-
ability of LLMs. More recently, flexible solutions like LLM agents
integrate search engines into task workflows by utilizing LLMs’
reasoning capabilities.

To this end, we introduce DB-Less SCA, which departs from tradi-
tional database-dependent approaches. Instead of cross-referencing
with a comprehensive database, our method emulates how secu-
rity analysts manually identify TPLs, substituting this process with
LLM-powered agents that follow a well-orchestrated chain of tasks.
To move toward a database-less SCA solution, several challenges
remain: C1) Inadequate Identity Evidence. Unlike traditional
SCA tools that rely on pre-defined database features, manual TPL
identification depends on expert intuition and diverse clues, mak-
ing it difficult to systematically gather such identity evidence. C2)
Comprehensive Information Searching. Analysts search for
documentation or claims supporting the identity evidence to trace
suspected TPLs. Automating this requires capturing analyst in-
sights and orchestrating precise information retrieval pipelines.
C3) Insufficient Validation. Validating the originality of TPLs
based on external claims is complex. Integrating analyst knowledge
into automated reasoning is essential for reliable assessment.

We propose the first live Database-less Software
Composition Analysis (LiveSCA), which leverages real-time Inter-
net data and combines LLMswith human expertise to re-orchestrate
the SCA process for TPLs. To address C1, we introduce a general
evidence-collection step that captures the textual semantics of target
libraries, beyond traditional low-level features like code structure,
enabling LLM agents to better understand library functionality. For
C2, we adopt a multi-agent framework that iteratively scrapes, in-
terprets, and compares search results. This mimics human analysis
by identifying the most relevant webpages based on prior evidence,
executed efficiently by LLM agents. To tackle C3, a dedicated valida-
tion agent independently confirms findings and provides feedback
to the summarization agent. This loop refines search objectives in
real time, improving the precision and relevance of results. LiveSCA
achieved success rates of 59.20% and 57.50% on two typical SCA
tasks. While not matching traditional tools with rich databases,
these results highlight the promise of DB-less SCA, especially for
overlooked TPLs, showing that the concept is still feasible.

2 Related Work
Traditional SCA tools: Both academic and industry tools consid-
ered state-of-the-art conduct Software Composition Analysis (SCA)
through either Software Bill of Materials (BOM) [16] detection or
code clone mapping [14, 24, 26–28, 30]. BOM detection tools, like
OWASP [2] and Sonatype [3], extract TPLs listed in SBOM files,
which detail dependency names, vendors, and versions—effective
mainly for languages with official package managers. However,
C/C++ lacks a universal package manager, limiting BOM-based
detection. Thus, leading tools such as BlackDuck [1], Snyk CLI [6],
ATVHunter [25], LibPecker [29], LibScout [11], and LibD [15] use
code clone mapping by comparing control flow and other features
against a database. CENTRIS [22] and OSSFP [23] improve accuracy
using features from popular GitHub repositories. Yet, none rely on
a complete TPL list, making them prone to false negatives.

Compiling a complete list of C/C++ TPLs is highly challenging.
There is no official package manager for formal library registration,
and many TPLs are scattered across personal websites or niche plat-
forms. This fragmentation makes building a comprehensive TPL list
impractical for improving current C/C++ SCA tools. Since all SCA
tools rely on a feature database, its completeness directly affects
accuracy. Our DB-less approach breaks from traditional methods
that depend on large, often burdensome databases. Despite its ad-
vantages, this strategy remains largely unexplored in both industry
and academia.

3 The Live DB-Less SCA Framework
LiveSCA enables database-less SCA by removing dependence on
pre-established databases. As shown in Figure 1, it employs a multi-
agent framework to autonomously identify and trace the origins of
open-source libraries. Each agent, denoted as𝐴𝑛 , operates indepen-
dently in its own LLM session unless otherwise noted. LiveSCA uses
Internet-based retrieval to determine library identities, beginning
with evidence extraction from target projects. It then summarizes
core descriptions of suspected libraries and iteratively crawls and
analyzes webpages to trace their origins. Finally, LiveSCA ranks
the results and validates the identified sources.

Given the diverse scenarios involved in SCA for TPL identifica-
tion, we selected two typical scenarios to demonstrate LiveSCA:
identifying native libraries in Android application packages (APKs) [9]
and detecting cloned TPLs in C/C++ projects [22]. The identification
of native libraries in Android apps is particularly crucial because
these libraries, often written in C/C++, are commonly utilized as
third-party components without uniform package management. It
often results in insufficient evidence regarding how these libraries
are compiled and incorporated, leading to challenges, such as vul-
nerabilities inherent in these libraries, posing security risks to the
Android application. The second scenario is the identification of
cloned source code in C/C++ libraries. Due to the absence of a
uniform package manager for C/C++, libraries are often directly
cloned into projects unlike other programming languages like Java.
Therefore, it is crucial to identify the cloned code in C/C++ projects
and their sources for subsequent analysis concerning security and
licensing. Contemporary tools such as Centris [22] and OSSFP [23]
are designed to extract precise features for library identification.
However, these tools depend on an existing database that incor-
porates features from previously identified libraries, which can be
overcome by LiveSCA.

3.1 Evidence Extraction
The initial step in the SCA process involves extracting features
from the target projects. Notably, SCA tools may accept various
formats, such as source code, bytecode, or binary files. Thus, this
extraction step is tailored to specific software formats. Regardless of
the formats, the fundamental objective remains the same: to gather
evidence that aids in the identification of libraries and the retrieval
of their origins. This phase also involves filtering out extraneous
noise, such as excessive strings extracted from ELF files. Given the
dependency on format-specific procedures, detailed implementa-
tions are discussed in the Implementation Section 3.4. The general
evidence includes dependency configurations, file locations, API
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Figure 1: Overview of LiveSCA

comments or documentation, and the relevant code context, but
the availability depends on specific tasks.

3.2 Web Searching
The subsequent step involves searching for the origins of the target
libraries, such as their homepages and repositories. This process is
initiated with inputs derived from the previously extracted evidence.
LiveSCA employs a multi-agent strategy to heuristically analyze
evidence and dynamically adjust the search process. Specifically,
three agents are deployed for optimized searching. Agent 𝐴1 pro-
cesses the evidence to identify relevant keywords that encapsulate
the core functionalities of the libraries. Based on these keywords,
𝐴1 retrieves and saves the first two pages of results from Google,
including titles, snippets, and URLs. For example, the keywords for
Glad were glad, OpenGL, loader, library, and CMake.

Agent 𝐴2 then collects the search results and iteratively scrapes
the web pages by Scrapy [8] into texts only. Considering that web-
page contents can be extensive, 𝐴2 is designed to synthesize and
summarize each page given the page content from the scraping,
producing a concise summary that highlights the primary uses of
the webpage. Consequently, each webpage is tagged with a brief
summary and, as a fallback, a snippet from Google if the webpage
crawling does not succeed. An example of Glad1 is "GLAD is a
multi-language Vulkan/GL/GLES/EGL/GLX/WGL loader-generator
based on official OpenGL specifications. It is commonly used to load
OpenGL functions and extensions in graphics programming."

Finally, Agent 𝐴3 assesses the alignment between the library’s
evidence and webpage content to identify the original source. To
filter out non-authoritative mentions from forums and forks, 𝐴3
ranks pages by relevance and authenticity. In the Glad case, it
correctly ranked the official homepage1 first.

3.3 Validation and Aggregation
The final step in LiveSCA involves aggregation and dynamic vali-
dation, coordinated by two specialized agents. Agent 𝐴4 performs
independent validation to avoid bias, comparing top-ranked web-
pages with the initially extracted features. If misalignments are
found, 𝐴4 provides reasoning that is fed back to refine evidence
keywords. This feedback loop runs up to three times to improve
search results. Once validated or if the loop limit is reached, Agent
𝐴5 aggregates the results, summarizes the target library, and out-
puts metadata suitable for inclusion in an SBOM.

1https://github.com/Dav1dde/glad

3.4 Implementation
LiveSCA is implemented using the widely adopted multi-agent
framework, Dify [13], which orchestrates workflows based on LLMs
with flexible, customized tools. The entire reproducible package
of Dify DSL is packed and stored online 1 with detailed prompts.
Within this framework, agents are implemented using GPT-4o [4],
the state-of-the-art (SOTA) model renowned for its efficiency in
handling a variety of text-based tasks.

For specific scenarios, the evidence extraction of LiveSCA varies
significantly, necessitating customized tools tailored to software
formats. In the context of native library identification in Android ap-
plications, LiveSCA initiates the process by extracting the APK [10]
files and examining the ELF [20] files in SO [18] format contained
within. Recognizing that the file name of an SO file often hints
at the native library name, LiveSCA initially saves this file name.
Following this, LiveSCA employs the strings command to ex-
tract readable strings from the SO file. Given the variability in how
vendor or version information is represented across different SO
files, LiveSCA selectively filters these strings based on their length
(shorter than 10 characters are discarded), as they typically lack
meaningful information.

For TPL recognition in C/C++ source projects, LiveSCA leverages
on the file structure to pinpoint potential TPL locations. Utilizing
the tree command, LiveSCA extracts the file structure of the target
projects and inputs this data into an LLM agent. This agent then
identifies potential TPLs and provides a list of the top five files
deemed worth inspecting. Subsequently, LiveSCA reads the content
of these specified files for each TPL. The contents of these files are
extracted and used as preliminary evidence for further processing.

4 Experiments
This experiment is designed to address two pivotal research ques-
tions with two typical SCA scenarios:
• RQ1: How effectively does LiveSCA identify native libraries
within Android applications?
• RQ2: How effectively does LiveSCA recognize open-source li-
braries in C/C++ projects?

4.1 Dataset Collection
For RQ1, our dataset collection involved Android applications from
Google Play. Initially, we gathered the top 100 applications and
extracted their corresponding SO files, resulting in a total of 11,205
files with duplicates. These files were associated with 108 different
libraries, where various versions corresponded to distinct SO files.

1https://drive.google.com/file/d/1BsbohzZjfCkw2VQIhWCsuFmh6EAie4eM/
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Table 1: Effectiveness of LiveSCA for Typical SCA Scenarios

Scenario #Total #Collected URL #Correct #Hints Found

SO in APK 108 64 64 102
Clone C/C++ 200 119 105 121

To validate the effectiveness of LiveSCA, we randomly selected one
SO file from each library, yielding a sample of 108 SO files.

For RQ2, we began by gathering a dataset of C/C++ projects from
GitHub by filtering for projects that not only had over 100 stars but
were primarily developed in C/C++, yielding 23,568 projects. For
manual confirmation, we randomly inspected projects andmanually
confirmed the usage of TPLs of them until the projects reached 100.
Then, we randomly selected 200 confirmed TPL as the dataset.

4.2 RQ1: Native library Identification
In the RQ1, we aimed to identify the sources, including homepages
and repositories, of 108 native libraries based solely on given SO
files. The results show that out of the 108 libraries, 64 (59.25%) were
correctly located. A manual analysis of the URLs of the collected
web pages validated the accuracy by the first three authors.

Further analysis was conducted on the unsuccessful cases. LiveSCA
encountered network failures in 6 instances, leading to aborted pro-
cesses. Excluding these, LiveSCA returned results for 102 cases,
with 64 successful identifications included. For the 38 cases where
sources could not be located, LiveSCA had correctly collected ven-
dor information, but no accessible URLs were available. Specifically,
26 of these cases involved source URLs that led to 404 errors, indi-
cating discontinued maintenance. Additionally, manual searches
for the remaining 12 cases did not yield any results, underscoring
the limitations of relying solely on Google search capabilities. Even
in the 38 cases where sources could not be located, LiveSCA suc-
cessfully returned vendor information deduced from the extracted
strings. This information can still be leveraged to manually locate
additional related webpages or undertake further searches. Thus,
even the unsuccessful cases contribute valuable data for refining
LiveSCA’s capabilities and for potentially guiding manual follow-
up searches or other fine-grained tools to uncover sources that are
not readily accessible via LiveSCA.

Overall, this task took an average time of 27.99s with 10,196.85
tokens with an estimated cost of less than 3 USD.

4.3 RQ2: Cloned TPL in C/C++ Projects
In the RQ2 subsection, we randomly sampled 200 distinct cases
to verify LiveSCA’s performance. As indicated in Section 4.2, out
of these cases, LiveSCA successfully identified the sources for 115
cases (57.50%). However, it initially found sources for 119 TPLs, but
4 of these were inaccurately identified upon manual verification.
These inaccuracies primarily stemmed from the broad or ambigu-
ous meanings associated with certain library names, which could
refer to multiple different entities. Common issues included overly
short names or names that overlapped with common terms. For
example, the incorrect TPL homepage for semver.comwas identified
because the library namewas semver, which, in the specific context,
referred to a C/C++ library implementing Semantic Versioning. In

contrast, semver.com hosts general documentation about Semantic
Versioning rules, not a specific library.

This error highlights a challenge in using LLM agents: distin-
guishing between closely related concepts that have nuanced dif-
ferences can be difficult. semver.com was flagged by the LLM due
to its strong relevance to Semantic Versioning, albeit not as a di-
rect source for the C/C++ library. Upon further manual investi-
gation, the correct URL for the C/C++ library was identified as
https://github.com/h2non/semver.c. This case exemplifies the need
for enhanced understanding in LLMs to differentiate between con-
textually similar but distinct entities.

We analyzed failure cases where the LLM agent returned no
URL and identified three main causes: (1) insufficiently distinctive
features in the extracted source code, often due to incorrect enu-
meration, which led to irrelevant search queries; (2) inaccessible
websites among the retrieved results, rendering URLs unusable;
and (3) ambiguous keywords or generic library names that yielded
numerous unrelated pages, obscuring the true source.

The average time LiveSCA took to complete the dataset is 29.36s
with 15,166.62 tokens with an estimated cost of less than 8 USD.

5 Discussion
5.1 Limitations
As a preliminary prototype, our framework, LiveSCA, exhibits sev-
eral limitations that impact its effectiveness. The primary limita-
tion lies in the LLM’s capacity to handle large text corpora. This
constraint may lead to the omission of critical details, adversely
affecting overall performance. To mitigate this, we have designed a
standalone agent specifically to comprehend and summarize the
essence or semantics of the corpus for further processing.

The second limitation concerns LiveSCA’s reliance solely on
Internet searches, restricting the scope to publicly available in-
formation. Private homepages, repositories, or data not currently
available on the Internet remain inaccessible. Extending the search
scope to include non-public data sources and historical webpage
snapshots could enhance the tool’s performance.

A third limitation is that our DB-less SCA framework primarily
focuses on coarse-grained TPL source pinpointing. Fine-grained
identification, which necessitates detailed detection of specific ver-
sions, is not currently supported due to the reliance on coarse evi-
dence. For more precise identification, a more detailed extraction of
library evidence is required to support subtle version differences.

Lastly, the framework lacks a comprehensive end-to-end vali-
dation process. Ideally, the DB-less SCA framework should vali-
date collected sources at the semantic level, allowing the returned
sources to be fed back into the evidence extraction step. This would
enable the extraction of adjusted evidence from the returned sources
for cross-verification with initial evidence.

5.2 Threats to validity
One of the primary threats to the validity of our work concerns
the ground truth labeling process. Due to the necessity of manually
reviewing collected webpages to understand the potential usage
relationships between the user’s project and the identified libraries,
the risk of errors in labeling is significant. To mitigate this risk, we
have implemented a majority voting scheme conducted by the first
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three authors. This approach aims to minimize subjective biases
and errors by ensuring that at least two out of the three authors
agree on the relevance and accuracy of each labeled instance.

Another potential threat lies in the dataset construction, as the
current dataset includes only a limited number of samples, which
may affect its representativeness. To mitigate this issue, we se-
lected widely used Android applications along with distinct native
libraries, as well as popular C/C++ repositories, to ensure diver-
sity and relevance. In future work, we plan to incorporate a more
extensive dataset to support a more comprehensive evaluation.

The settings and configurations of employed techniques may
pose a threat to validity. For example, the output of Scrapy for web
scraping depends on its configuration, which affects the extracted
text. Similarly, parameters like the depth of the tree command
and file extension filters influence the scope and relevance of re-
trieved evidence. The temperature setting of GPT-4o can also affect
generation consistency. To mitigate these risks, we adopted widely
recommended configurations and set the temperature to zero.

6 Conclusion
In conclusion, the development and evaluation of LiveSCA have
demonstrated its capability to effectively identify native libraries in
Android apps and recognize cloned C/C++ TPLs, achieving success
rates of 59.20% and 57.50% respectively. These results underscore
the viability of a multi-agent, DB-less SCA framework, showcasing
its potential to operate efficiently without reliance on traditional
databases and overcome the current bottleneck of the incomplete
pre-built database.
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